

AFRL-IF-RS-TR-2002-75
Final Technical Report
April 2002

COMPUTER SECURITY ASSISTANCE PROGRAM FOR
THE TWENTY-FIRST CENTURY (CSAP21)
ADVANCEMENT AND EXPERT TECHNOLOGY
EXCHANGE (CAETE)

WetStone Technologies

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public, including
foreign nations.

 AFRL-IF-RS-TR-2002-75 has been reviewed and is approved for publication.

APPROVED:

 JAMES L. SIDORAN
 Project Engineer

 FOR THE DIRECTOR:

 WARREN H. DEBANY, Technical Advisor
 Information Grid Division
 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
APRIL 2002

3. REPORT TYPE AND DATES COVERED
Final Jun 99 – Jun 00

4. TITLE AND SUBTITLE
COMPUTER SECURITY ASSISTANCE PROGRAM FOR THE TWENTY-
FIRST CENTURY (CSAP21) ADVANCEMENT AND EXPERT
TECHNOLOGY EXCHANGE (CAETE)

6. AUTHOR(S)
Chester Hosmer

5. FUNDING NUMBERS
C - F30602-99-C-0041
PE - 33140F
PR -: 7920
TA - 09
WU - P2

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
WetStone Technologies, Incorporated
17 Main Street, Suite 237
Cortland New York 13045

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFGB
525 Brooks Road
Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-75

11. SUPPLEMENTARY NOTES
AFRL Project Engineer: James L. Sidoran/IFGB/(315) 330-3174/James.Sidoran@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
This contract final technical report documents the CSAP21 Advancement and Expert Technology Exchange (CAETE)
project results. This project expanded the capabilities of the Computer Security Assistance Program for the Twenty-
First Century (CSAP21) system of systems architecture by enhancing and expanding the functionality of the Network
Monitoring and Assessment (NMA) module of the Interactive Information Protection Decision Support System (IIPDSS)
testbed.

15. NUMBER OF PAGES
42

14. SUBJECT TERMS
Network Monitoring and Assessment, Intrusion Detection, CSAP21
 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

Table of Contents

1 PERIOD OF PERFORMANCE .. 1

2 DETAILED PROGRAM SCHEDULE... 1

3 BACKGROUND... 3

3.1 Major Accomplishments: ... 4

4 PROJECT ACTIVITY... 5

4.1 Travel ... 5

4.2 CAETE Architecture .. 5

4.3 Completed Software Modules.. 8

4.4 ASIM Bridge.. 9

4.5 Situational Policy Editor .. 10

4.6 Formal Policy Verification ... 12
4.6.1 Consistency & Completeness Issues... 12
4.6.2 Solution... 13

4.6.2.1 Consistency... 13
4.6.2.2 Completeness .. 14
4.6.2.3 Algorithm for Completeness Check.. 16
4.6.2.4 Algorithm for Consistency Check .. 18

4.6.3 Algorithm Results ... 19

4.7 Network Monitoring and Assessment (NMA) Decision Engine 21
4.7.1 The Decision Engine... 21

4.8 Visualization Engine ... 23

4.9 Expert Technology Transfer.. 25
4.9.1 Scope... 25
4.9.2 NMA into IA:AIDE .. 25

4.9.2.1 Parser Sensor Fusion... 26
4.9.2.2 Fuzzy Classifier .. 26
4.9.2.3 Event Classifier... 27
4.9.2.4 Bridge Interface .. 27

4.9.3 NMA (AIDE) Detailed Design ... 28
4.9.3.1 General Thread Operation... 28
4.9.3.2 NMA/AIDE Implementation .. 30

ii

4.9.3.3 Modified NMA Structure.. 32
4.9.3.4 Java GUI Interface .. 35

5.0 SUMMARY.. 35

List of Figures

Figure 1 – Schedule……………………………………………………………………………….2
Figure 2 - CAETE Architecture.. 6
Figure 3 - Module Interaction……………………………………………………………………..7
Figure 4- ASIM Bridge... 9
Figure 5 - Situational Policy Editor .. 10
Figure 6 - Alarm Classification Rules .. 11
Figure 7 - Decision Tree Structure……………………………………………………………….16
Figure 8 - Consistency Results ... 19
Figure 9 - Completeness Results... 20
Figure 10 - NET-FLARE Decision Engine .. 22
Figure 11 - NET-FLARE Visualization Engine ... 23
Figure 12 - NET-FLARE Correlation... 24
Figure 13 - NMA Solaris .. 26
Figure 14 - NMA (AIDE) Detailed Design .. 28
Figure 15 - Original Configuration of NMA Interface ... 31
Figure 16 - Modified Configuration of NMA Interface.. 31
Figure 17 - Internal Box Diagram of NMA Module... 32
Figure 18 - Original Receiver Block Diagram.. 33
Figure 19 - New Receiver Block Diagram ... 33

List of Tables

Table 1 - Accomplishments .. 4
Table 2 – Travel .. 5
Table 3 - Completed Software Modules ... 8
Table 4 - Consistency & Completeness .. 12

1

1 Period of Performance

This report reflects performance from 3/1/99 – 12/31/99.

2 Detailed Program Schedule

The following represents the current detailed program schedule.

2

CAETE Final Schedule

Figure 1 - Schedule

ID
Ta

sk
 N

am
e

1
TA

SK
 1:

 N
M

A
Te

ch
no

lo
gy

 A
dv

an
ce

m
en

t

2
AS

IM
 R

ep
lay

 M
od

ul
e

3
De

sig
n

4
Im

ple
me

nta
tio

n

5
Si

tu
at

io
na

l P
ol

icy
 Ed

ito
r

6
De

sig
n

7
Im

ple
me

nta
tio

n

8
Fo

rm
al

Ve
rif

ica
tio

n S
ub

sy
ste

m

9
De

cis
io

n
En

gi
ne

10
De

sig
n

11
Im

ple
me

nta
tio

n

12
Vi

su
ali

za
tio

n
M

od
ul

e

13
De

sig
n

14
Im

ple
me

nta
tio

n

15
In

st
all

at
io

n
So

ftw
ar

e

16
Im

ple
me

nta
tio

n

17
Ex

pe
rt

Tr
an

sf
er

18
AC

TD
/A

IDE
 N

MA
 Po

rt

19
Re

po
rts

20
St

atu
s R

ep
or

t 1

21
Te

stb
ed

 D
eli

ve
ry

22
Te

ch
ica

l In
fo

rm
ati

on
 R

ep
or

t (
Co

mm
en

ted
 S

ou
rc

e)

23
Fin

al
Re

po
rt

6/1
1

9/3
0

12
/31

12
/31

Oc
t

No
v

De
c

Ja
n

Fe
b

Ma
r

Ap
r

Ma
y

Ju
n

Ju
l

Au
g

Se
p

Oc
t

No
v

De
c

Ja
n

Fe
b

Ma
r

Ap
r

Ma
y

Ju
n

Ju
l

Qt
r 1

, 1
99

9
Qt

r 2
, 1

99
9

Qt
r 3

, 1
99

9
Qt

r 4
, 1

99
9

Qt
r 1

, 2
00

0
Qt

r 2
, 2

00
0

Qt
r 3

, 2
00

0
Qt

3

3 Background

WetStone Technologies is advancing the Computer Security Assistance Program For the
Twenty-First Century (CSAP21) System of systems architecture by moving the Network
Monitoring and Assessment (NMA) module forward to the point of installing it at several
key components at U.S. Air Force installations. These installations will promote furthering
our communications with analysts in the trenches, thus allowing us to further enhance the
existing NMA and Visualization Component (VC).

WetStone Technologies has recently completed an effort designed to advance the state-of-
the-art in information protection by rapidly moving key aspects of the CSAP21 system of
systems architecture forward. The CSAP21 Module Demonstration project (Contract #:
F30602-98-C-0220) has produced a proof of concept demonstration that provides key
capabilities that can be used immediately by the U.S. Air Force to improve the information
security posture.

4

3.1 Major Accomplishments:

The following table represents the original requirements and the refinements made during
the effort.

Original Requirement Refinement
Develop a software bridge to ASIM 2.0
allowing for a real-time connection and
processing of ASIM reports.

Developed a software bridge to provide replay of
ASIM 1.7 and 2.0 log files. This requirement was
modified from the original because we were not
allowed to instrument (add software to) the ASIM
hardware platform. Instead, we developed a GUI
application that allows the simultaneous replay of
multiple ASIM log files (version 2.0 and 1.7)

Formalize the NMA Knowledge Base in
order to prove the consistency of the rules
table.

Completed as specified

Expand the fuzzy data fields evaluated by
the NMA during it decision making phase.
The contractor will examine additional data
from ASIM such as key word violations
and service operations as possible
extensions of the table and fuzzy sets.

Completed as specified

Not Specified Advanced the fuzzy knowledge base concept to
include the ability to develop situational decision
making policies.

Work on-site with the AFRL staff at
Rome and their contractors to advance
information protection capabilities into
adjunct projects such as EPIC and
ACTD/AIDE

Ported the Network Monitoring and Assessment
Module (NMA) and Policy Editor to Solaris and
integrated these technologies with the AIDE
environment.

Port the NMA, VC and the ASIM 2.0
bridge software to a PC notebook
computer for inclusion into the IIPDSS
testbed.

Completed as specified

Install the NMA and Visualization
Component (VC) modules at 3
installations in order to receive feedback
from analysts on their operation and use.
Perform system upgrade per user feedback

Produced an installable CD that has been
distributed to many locations for installation and
experimentation. The current installations
include. DARPA TIC, DISA JPO, AFRL-HQ,
AFRL-HE, AFIWC, AFRL Rome Cyber-
Forensics Lab, and HQ AFSPC/SC.

Table 1 - Accomplishments

5

4 Project Activity

4.1 Travel

Date Destination Purpose of Trip
3/8/99 AFRL – Rome, NY Planning Meetings
3/19/99 AFRL – Rome, NY Initial demonstration
3/24/99 AFRL – Rome, NY Planning Meetings
4/8/99 – 4/13/99 WetStone NY Offices Formal Kickoff Meeting
4/12/99 – 4/17/99 AFRL – Rome, NY AIDE Installation
4/21/99 AFRL – Rome, NY Meetings
5/10/99 – 5/11/99 AFWIC – San Antonio, TX Demonstration & Meetings
5/12/99 – 5/13/99 Ithaca, NY Conference & Meetings
5/14/99 CFRDC – New Hartford, NY Meetings & Planning
5/20/99 – 5/21/99 AFRL – Rome, NY Software Development
5/25/99 HQ – Dayton, OH Demonstration & Meetings
6/9/99 AFRL, Rome, NY Software Support
9/17/99 AFRL, Rome, NY Demo NET-FLARE
9/28/99 AFRL, Rome, NY Software Delivery

Table 2 – Travel

4.2 CAETE Architecture

The CAETE architecture is based on several simple concepts and is depicted below.

1. System components communicate over an open bus architecture
2. Multiple components of each type are encouraged
3. The bus structured is a simple TCP/IP messaging based infrastructure that carriers CIDF

messages.
4. Visualization is provided as a separate and distinct component. The Visualization

Component provides decision support and course of action recommendations to the
information warrior.

Based on this simple architecture during this effort we instantiated several key components of the
architecture and demonstrated their interoperability and flexibility. Components include the
NMA (Decision Engine), the Visualization Engine, and the Situational Policy Editor. A detailed
layout of their interaction is depicted below.

6

Figure 2 - CAETE Architecture

In order to experiment and test this proof of concept prototype, we designed, developed, and
tested several key re-useable software components. The table on the following page defines
those components, and sections following describe the capabilities and functionality of each.

Future Implementation
ITC - Intelligence and Threat Correlation

CNM- Network Mapping
RA - Risk Assessment

M&S - Modeling and Simulation

 FY98 Prototype Demonstration
NMA - Network Monitoring & Assessment
SP – Situational Policy
SA - Situation Assessment
CIDF - Common Intrusion Detection Format
CDS - Common Data Storage
VIS - Visualization Module

CNM

CIDF

CIDF

NMA

CIDF CIDF

RA

CIDF

ITC

M&S

CDS

VIS

CIDF CIDF CIDF

SA

SP

CIDF

7

Geographically Dispersed
IDS Sensor Data

Decision Support Engine

Figure 3 – Module Interaction

Visualization and
Correlation

Engine

Fuzzy Logic
Situational

Policy Creation and Verification
Engine

Fuzzy
Situational

Policy

Visualization Policy

8

4.3 Completed Software Modules

Software
Component

Description Version Source OS

ASIM Bridge
Software

Provides multiple simultaneous replay of ASIM 1.7
and 2.0 log files. The log files are communicated
over the CAETE Architecture via the common data
bus TCP/IP

1.1 Object
Pascal

Windows
NT

Situational
Policy Editor
NT

Provides the user with the capability of defining and
creating situational decision support polices for
ASIM data streams on Windows NT platforms.

1.1 Object
Pascal

Windows
NT

Situational
Policy Editor
Solaris

Provides the user with the capability of defining and
creating situational decision support polices for
ASIM data streams on Solaris platforms.

1.0 Java Solaris

Network
Monitoring
and
Assessment
(NMA)
Decision
Engine

Receives ASIM events from the ASIM bridge and
provides recommended course of actions defined
by the Situational policy. The decision engine
derives additional data from the ASIM events in
both static and state based forms. The NMA
outputs the raw data, derived data, fuzzy
conversion, and recommended course of actions,
classification and impact of the event. The NMA
provides output via the CAETE Architecture via the
common data bus TCP/IP

1.1 C++ Windows
NT

Network
Monitoring
and
Assessment
(NMA)
Decision
Engine

Receives ASIM events from the ASIM bridge and
provides recommended course of actions defined
by the Situational policy. The decision engine
derives additional data from the ASIM events in
both static and state based forms. The NMA
outputs the raw data, derived data, fuzzy
conversion, and recommended course of actions,
and classification of the event. The NMA provides
output via the CAETE Architecture via the common
data bus TCP/IP

1.0 C++ Solaris

Visualization
Engine

This component receives data from the NMA from
the CAETE Architecture via the common data bus
TCP/IP. The input provided is the NMA raw data,
derived data, fuzzy conversion and recommended
course of action.

1.1 Object
Pascal

Windows
NT

Table 3 - Completed Software Modules

9

4.4 ASIM Bridge

The ASIM Bridge software application depicted below allows for the selection of ASIM log files
version 1.7 or 2.0 for “accelerated time” replay. The ASIM events are replayed and fed into the
CAETE architecture over the TCP/IP data bus. Any number of log files can be simultaneously
replayed simulating multiple geographic sensors supply data over the CAETE infrastructure.

Figure 4- ASIM Bridge

10

4.5 Situational Policy Editor

This component provides the analyst with the ability to create, verify, and then deploy
operational decision support policies that are based on a particular situation or mission. The
engine tools allow the analyst to define the “meaning” or translation of raw intrusion detection
sensor data values into a “set” of fuzzy values for a given situation. For most Network based
IDS sensors, the type, or “kind-of” data that is provided is similar. Common data included is the
time of the network session traffic, originating IP address, destination IP address, session
volume, session duration, TCP/IP or UDP service type, etc. From this information, we can
define a policy for conversion of this raw sensor data into meaningful fuzzy sets.

The following table provides an actual example of raw sensor data that has been converted into a
set of fuzzy values based on a situational policy. You will notice that we have significantly
expanded the information available from the sensor into a rich set of fuzzy values.

Figure 5 - Situational Policy Editor

Based on this set of possible fuzzy values, the analyst can construct rules based on the fuzzy set.
Each rule combines the possible fuzzy values together and then determines the outcome if the
rule is evaluated to true. Our current policy model supports the dyadic operators of AND and
OR for rule creation along with “*” or wild card support within rules. Our decision to limit the
number of dyadic operators was only to simplify rule construction and verification by the
analyst.

11

Figure 6 - Alarm Classification Rules

12

4.6 Formal Policy Verification

The fuzzy model for rule development provides us with great flexibility for rule specification as
with other expert system approaches. Major questions surrounding the use of AI technologies in
decision support applications revolve around the question of accurately modeling the decision
process. Verification of these models is necessary in order to ensure the accuracy and
predictability of the results. In our approach it is very important that the policy accurately
matches the analyst intent since the analyst in the field must be able to rapidly develop and
deploy situational policies. We would like to be assured that the fuzzy policies that we create are
complete – all possible combinations of data are covered, (completeness check); and that no two
rules cover the same combination of data but rather assign a different course of action
recommendation (consistency check).

Based on our approach, rules tables can grow to be large and it is difficult to inspect them by
hand. If each data field X has Xi possible fuzzy values, and there are n fields, the total possible
number of combinations is X1*X2*X3 …. *Xn. As an example, in the ASIM rules table where n
= 22, and each field has no more than 4 possible fuzzy values, the total number of combinations
is greater than 109. Based on this, it is obviously not feasible to inspect the rules for consistency
and completeness by hand.

Using techniques borrowed from Formal Methods or proofs, we have applied techniques to the
matrix of rules, to confirm in a formal deterministic fashion, that we have achieved both
consistency and completeness. Furthermore, these methods provide results that allow us to
present the analyst with the consistency and completeness problems found, allowing the analyst
to correct the conflicts.

4.6.1 Consistency & Completeness Issues

Verify the consistency and completeness of a table with n columns and m rows. Each row
represents a “rule”. Each rule consists of assigned values for each fuzzy category as well as the
recommendation for this particular combination of values. A user can change the number of
columns and rows arbitrarily, (i.e. add new rules and categories). We assume the following
definitions:

Consistency: there are no rows covering the same rule but stating different recommendations.
Completeness: all possible combinations of fuzzy category values are taken into account.

Recommendation Fuzzy
Category 1

Fuzzy
Category 2

…. Fuzzy
Category n

R V1 V2 … Vn
R … … … Vn
R V1 V2 … Vn

Table 4 - Consistency & Completeness

13

Possible Values:

 R = {r1, r2, …., rk}
 V1 = {v11, v12, …, v1,num_values[cat1] }, or V1= *, which means “any of the possible

values”.
 …
 Vn = {vn1, vn2, …, vn, num_values[catn]}, or Vn = *, which means “any of the possible

values”.

m, n, k, num_values[cat1],… , num_values[catn], are finite integers.

4.6.2 Solution

Use a software tool with the following constraints:

Input:
• names of fuzzy categories and all their possible values
• all possible values for recommendation
• contents of the table

Output:
• boolean output stating if consistency is satisfied, and if not, which rules are

conflicting
• boolean output stating if completeness is satisfied, and if not, which rules are missing

4.6.2.1 Consistency

Consistency can be checked relatively easily. Assuming that each row is of the form:
Ri Vi1 Vi2 Vi3 … Vin

We would check each row against all other rows to find if they cover the same rule. Rows i and j
cover the same rule if:

 For all columns c, c= 0, …., n:

Vic = Vjc, or Vic= * or Vjc = *, i = 0, .., m, j = 0, …m

In order to improve performance, an efficient comparison algorithm should be used. The most
primitive, slowest algorithm that illustrates the issue would be:

 for i = 0, … m
 {
 rule1 = Ri Vi1 Vi2 … Vin

 for j = i+1, …, m:
 {

rule2 = Rj1 Vj1 Vj2 … Vjn

14

 if (rule1 == rule2)
 {
 if (Rj1 == Rj2) not consistent
 else consistent
 }
 }
 }

4.6.2.2 Completeness

There are two major approaches to the problem.

In the first approach, we can “blow up” all * entries in the table, eliminate duplicate rows, and
count the resulting lines. The number of lines covering all possible rules must be:

num_values[cat1] * num_values[cat2] * …. * num_values[catn]

The problem with this approach is that we would not know which rules are missing.

In the next approach, we can generate a table of all possible rules, and check our table against
this gold standard. This would allow us to know which rule(s) are missing. The consistency
check would be obtained “for free” as we search the table.

Assume that the “gold standard table” has rows called GoldStandardRule, of the form:

Rg V1g V2g … Vng

Assume that the able to be checked has rows of the form:

R V1 V2 … Vn, i = 0, …, m

The algorithm for checking would be:

 //For each GoldStandardRule, search the table to find all
rows that match it:

 For all GoldStandardRules rn = 0, …,
num_values[cat1]*…*num_values[catn]:
 {
 For all rows of the table, i = 0, …., m:
 {
 For all columns of the table, c= 0, …, n:

{
if (Vc = Vg, or Vc = *) match
else no match

15

 }
 }

//if no matches have been found for this
GoldStandardRule,
// consistency is violated

//For all matching rules found, check if their
recommendations are //different

 }

For example, if a GoldStandardRule is:

rx a b c

And the table has matching entries covering this rule (assuming that each category can have a,b,
or c as possible values):

rx a * c
rx * * c
rz a b *

Then consistency would be violated for the first and second table rules, because * expanded in
those rules generates rules that cover the rule a,b,c.

One of the issues with this approach is the automatic generation of all possible rules without
knowing ahead of time how many categories are involved. This issue can be solved if we start
from the rule with all * entries, and “blow up” the entries one by one.

The major problem with this approach is the size of the tables generated. For example, if there
are 10 categories, each with 4 possible values, then there are 4^10 = 1,048,576 possible rules.

Since the table supplied for checking should have many entries with * values, it would be
prudent to use this opportunity. We propose to use the following approach, based on a “tree”
structure:

 Search the table for rule * * … *
 If not found, “blow up” the first *, (i.e. go one level
down, and search for rules:

v11 * … *
v12 * … * …
…
v1, num_values[cat1] * … *.
For each rule not found in the table, continue to
“blow up” the next * in the
rule and search the table.

16

Graphically, we can picture this tree structure. Assume that we have 3 categories, each with
possible values of a,b, and c. The tree would look like that presented below. The nodes are rules,
and the number of branches at level i equals num_values[cat i]. The tree dynamically grows as
we search the table for particular rules. Whenever we find a node of this tree present in the table,
we know that all rules in that branch are covered in the table, and we need not check for their
presence in the table. Therefore, we need not expand this branch of the tree any further. In the
worst case, we have to generate nodes at the maximum possible depth, (i.e. generate the “golden
standard” rule table), and we have to search the table for each node of the tree. Searching the
table should not present a performance issue, since the table is always relatively small, perhaps
in the order of 100 rows and 20 columns. In this approach, consistency checking does not come
for free anymore but has to be done separately.

4.6.2.3 Algorithm for Completeness Check

list <string> pattern;
list <pattern> Patterns;
list <pattern>:: iterator y;

for (ii = 0; ii < number_categories; ++ii)
{
 pattern += “*”;
}

Patterns.push_back(pattern);
y = Patterns.begin();

while (y < Patterns.end())

* * *

b c *

a * *

b b *b a *a c *a a * a b *

c * *b * *

c a * c c *c b *

a a a a a b a a c

Figure 7 - Decision Tree Structure

17

{
 pattern = *y;
 if (table.find(pattern) != table.end()) //found pattern in
the table
 {
 if (only_stars(pattern))

cout << “Unsafe!\n”;
 Patterns.erase(y);
 }
 else
 {
 if (pattern.find(‘*’) != pattern.end()) //pattern
contains at least one *
 {
 BlowUp(pattern, Patterns);
 Patterns.erase(y);
 }
 else
 {
 cout << “”Rule “ << pattern << “not matched.\n”;
 }
 }

 if (y != Patterns.end())
 {
 y++;
 }
}

bool only_stars(list<string> pattern)
{
 bool res = true;
 list<string>::iterator y;

 for (y = pattern.begin(); y< pattern.end(); ++y)
 {
 if (*y != ‘*’)
 res = false;
 }
 return res;
}

void BlowUp(list <string>& pattern, list<pattern>& Patterns)
{
 list<string>::iterator fs;

fs = pattern.find(‘*”);

18

 for (ii = 0; ii < num_values(category fs); ++ii)
 {
 *fs = category fs(value ii);
 Patterns.push_back(pattern);
 }
}

4.6.2.4 Algorithm for Consistency Check

List<string> row1;
List<string> row2;
List<string>::iterator y;
List<row> table;

for (y = table.begin(); y < table.end(); ++y)
{

row1 = *y;
for (x = y+1; x< table.end(); ++x)
 row2 = *x;
 if (equal(row1.begin(), row1.end(), row2.begin(),

cover_same_rule(row1,row2))
 {
 if (row1.front() == row2.front())
 {
 cout << “Inconsistency with rows << row1 << ‘\n’

<< row2 << ‘\n’;
 }
 else

{
}

 }
 else

{
}

 }
}

//row1 and row2 must be of the same length
bool cover_same_rule(list<string>& row1, list<string>& row2)
{
 list<string>::iterator y;
 list<string>::iterator x;
 bool result = true;

 x = row2.begin() +1 ;
 for (y = row1.begin() + 1; y < row1.end(); ++y)

19

 {
 if ((*y == *x) || (*y == ‘*’) || (*x == ‘*’))
 {
 }
 else
 {
 result = false;
 }
 ++x;
 }
 return result;
}

4.6.3 Algorithm Results

After implementing the algorithms specified above we apply them to the situational policy
models we developed. The result is specific details as to the conflict between rules and the
completeness of the rule tables developed.

Figure 8 - Consistency Results

20

Figure 9 - Completeness Results

21

4.7 Network Monitoring and Assessment (NMA) Decision Engine

4.7.1 The Decision Engine

The Decision Engine (DE) is the workhorse of the decision analysis process. This program is
responsible for performing the fuzzy analysis using raw sensor information based on the rules set
forth by the analyst. To perform this task, the program must:

1. Parse the raw sensor data
2. Convert the raw data into a set of fuzzy values based on the currently specified policy
3. Derive additional data from the raw data (i.e. derive Day-Of-Week and Time-Of-Day

from the dates and time)
4. Track state and “per-IP” statistical information (daily alarms, daily volume, daily

duration)
5. Extract additional information from other sources (i.e. DNS)
6. Fire the fuzzy rules using the complete set of fuzzy values
7. Output the analysis results to the Visualization engine.

The analyst uses the Policy and Verification Engine to create and/or modify a policy. The
Decision Engine communicates with the Policy and Verification Engine to obtain the current set
of fuzzy values and rules to apply during the analysis process. The Decision Engine also has a
Graphical User Interface that displays some state information and error messages.

The DE is a multithreaded application that can accept sensor input from multiple sources
simultaneously in an asynchronous fashion. The DE’s processing is simple and can analyze
sensor information quickly. Operations that require more processing, such as DNS lookups, are
performed in a separate thread and do not impede processing of other alarms. Additionally, in
the case of DNS, network information can be cached to reduce costly DNS lookups.

The DE’s innovative design is setup in such a way that the fuzzy analysis is performed
independently of raw sensor data parsing. Therefore, in most cases, the DE requires little or no
modification to support new sensors and new fuzzy values. One possible technological
advancement of this design includes the use of a input specification language that would allow
the analyst to modify the parsing rules for the sensor and thus allow any type of sensor to be
added with no code modifications. This advancement is in alignment with our non-“hard-wired”
approach and would extend the life cycle of this technology significantly.

22

Figure 10 - NET-FLARE Decision Engine

23

4.8 Visualization Engine

The Visualization Engine provides the Information Warrior with an “at-a-glance” view of what
has been received by the system. Fuzzy values, as well as raw values are displayed here for use,
and notes may be kept on each of the active alarms in the system. The analyst has the ability to
clear alarms from the system, while retaining the ability to view all data for the cleared alarms.

The analyst has the ability to generate a policy for the Visualization system giving him control of
different aspects of the system. For example, colors may be selected to represent an alarm’s data,
based on the alarm’s classification or specific fuzzy values.

Figure 11 - NET-FLARE Visualization Engine

The correlation features of the visualization engine automatically correlate data that arrives from
a particular source, is target toward a specific destination or originates from the same country.
This provides the analyst with the ability to quickly examine results from multiple sensor events.

24

Figure 12 - NET-FLARE Correlation

25

4.9 Expert Technology Transfer

During this task WetStone staff worked on-site with the AFRL staff at Rome and their
contractors to advance information protection capabilities into adjunct projects such as
EPIC and ACTD/AIDE.

Under the direction of Dwayne Allain, Brian Spink and Mike Nassif, WetStone
Technologies was directed to port the Network Monitoring and Assessment technology to
Solaris and integrate it with the AIDE environment.

4.9.1 Scope

The IA:AIDE ACTD (AIDE) includes capabilities to monitor, correlate, and assess computer
network intrusions. It accepts input from multiple sensors, including ASIM, JIDS and Network
Radar. WetStone Technologies, Inc., under an Air Force contract, has developed a unique
correlation and assessment system for ASIM data. This correlation module is called Network
Monitoring and Assessment (NMA). The correlation that NMA can do on ASIM data can be
further enhanced.

The purpose of this effort was to have WetStone Technologies, Inc., extend the current Network
Monitoring and Assessment (NMA) Module to cover data available from ASIM and other,
related sensors (e.g., those derived from the same base as ASIM); and provide assistance to PRC
staff at the AFRL/Rome Site during the integration of the modified NMA.

4.9.2 NMA into IA:AIDE

WetStone Technologies worked with PRC staff at the AFRL Rome Site to determine what
modifications needed to be made to the NMA to allow for compatibility with IA:AIDE on a Sun
UltraSparc under the Solaris operating system. Our initial design for the modified system is
shown in the following figure.

26

Fuzzy Sets
KB

Parser
Sensor
Fusion

Fuzzy
Classifier

Event
Classifier

NMA KB

Bridge
Interface

Sensor
Report

Fuzzy Set Fuzzy Sensor Data

Alarm
Classification

Rule Matrix

Classified
Events

NMA Solaris

GSI Bridge

WetStone
Visualization

Display

Fuzzy Sensor Data

TAP

Figure 13 - NMA Solaris

4.9.2.1 Parser Sensor Fusion

This process receives and acknowledges requests from the AIDE Parser.

Requirements

1. This module will be developed as a process under the Sun Solaris OS.
2. TCP/IP Server Socket Interface will accept raw sensor data from the TAP.
3. Once the TAP transmits the NSE (TCP Send function), the Parser will shutdown and close

the socket.
4. An internal data object NSE_OBJ will be created for each NSE received and then passed on

to the Fuzzy Classifier Agent. Memory allocation responsibilities will be passed with the
object.

4.9.2.2 Fuzzy Classifier

This module accepts requests from the Sensor Fusion Agent and applies the Fuzzy
knowledgebase rules to each NSE.

Requirements

The module will be developed as a process under the Sun Solaris OS.

27

Each NSE field will be evaluated against the Fuzzy KB and assigned a Fuzzy value.
The Fuzzy values will be added to the NSE_OBJ and passed on to the Event Classifier.
Memory allocation responsibilities will be passed with the object to the Event Classifier.

4.9.2.3 Event Classifier

The Event Classifier accepts requests from the Fuzzy Classifier and applies the NMA KB rules
to the NSE_OBJ.

Requirements

The module will be developed as a process under the Sun Solaris OS.
Each NSE_OBJ’s Fuzzy values will be used to search the NMA KB to find a matching
classification rule. Once found the classification rule and the corresponding recommended
action will be updated in the NSE_OBJ.
The Fuzzy values will be added to the NSE_OBJ and passed on to the Bridge Interface.
Memory allocation responsibilities will be passed with the object to the Event Classifier.

4.9.2.4 Bridge Interface

The Bridge Interface accepts requests from the Event Classifier, and applies and formats the
output for transmission via a TCP/IP socket to the WetStone Technologies’ Visualization
Environment and the GSI-Bridge.

Requirements

1. The module will be developed as a process under the Sun Solaris OS.
2. Each NSE_OBJ’s Fuzzy values and Event Classification values formatted for transmission to

the GSI-Bridge and the Visualization component
3. The content of the transmission will abide by the ACTD-AIDE standard for Normalized data.
4. The TCP/IP socket software will transmit the results
5. The NSE_OBJ will be logged.
6. The NSE_OBJ will be destructed and the memory released.

28

4.9.3 NMA (AIDE) Detailed Design

Specifier
1.3

Objectizer
1.2

Fuzzy
KB

NMA
KB

Dispatcher
Thread

1.1

Classifier
1.5

Packetizer
1.7

Dispatch
Table

Normalizer
1.6Deriver 1.4

S

S

Q

Q

Finalizer
1.8

QS
QS QS S Q QSS

NMA Design

SO
SO SO SO

SO

Dispatch
Entries

SO

SO

Error
Thread

1.8

Q

Figure 14 - NMA (AIDE) Detailed Design

Above we show the NMA detailed design. The NMA has 7 threaded processes that can be
configured to interoperate based upon the configuration of the dispatch thread. The dispatch
thread controls the operation based upon the state of the Sensor Object (SO) and the dispatch
table.

4.9.3.1 General Thread Operation

Each NMA thread works on a simple principle. The thread waits for a single event (a
semaphore) that alerts the thread that its queue needs attention. (Note: The semaphores that will
be used are of the counting variety). The thread will process the SO’s, based upon the
requirements of the thread and update the state of the SO based upon the success or failure of the
thread.

29

The general structure of the SO is as follows:

enum SO_State {PARSED, FUZZY_SPECIFIED, FUZZY_CLASSIFIED,
FORWARDED, LOGGED, ERROR};

enum SO_SensorType {ASIM, JIDS, NETRADAR, TCPWRAPPERS};

class SO
{
 private:
 int soID;
 SO_State state;
 SO_SensorType type;
 // private member functions
 …
 …
 public:

 // sensor data structure

 // public member functions
}

Objectizer
The process begins when the Objectizer thread receives an event or alarm from a connected
sensor. The Objectizer (parser) creates an SO for each event received. As defined above, the
parser object parses the alarm stream and extracts the individual data fields from the alarm data.
The parser then builds the SO for the event received. Each SO object has a private member
variable “state”, the state variable is set to the “PARSED” state and is forwarded to the
dispatcher’s Queue and the Dispatchers Semaphore is called to notify the dispatcher that an SO
object is ready for processing. In the current design the dispatcher will forward the SO on to the
Fuzzy Specifier Thread based on the dispatch table configuration. This can be modified by
changing the dispatch table in the future.

Specifier
This process begins when the Specifier receives a semaphore indicating a new SO has arrived in
the input queue. The Specifier then processes the object and classifies each sensor data element
to a Fuzzy values based on the Fuzzy Sets KB. Once the fuzzy specification process is
completed, the SO state is set to FUZZY_SPECIFIED. The object is then placed in the Dispatch
Queue and the Dispatch Semaphore is increased. The Specifier then goes back to waiting for a
new SO object to arrive.

Normalizer

The Normalizer is responsible for converting the SO object into the normalized stream specified
by the ACTD. The normalized data is transmitted to the Packetizer using the established TCP/IP
socket.

30

Classifier
As with the Specifier, the Classifier waits for a new SO object to arrive. Once a new SO is
available for processing, the Classifier searches the NMA KB for a matching rule based upon the
fuzzy values contained in the SO. The NMA classifies the SO based on the rules in the NMA
KB. Once completed the SO state is set to FUZZY_CLASSIFED and sent to the Dispatch
Queue and the Dispatch Semaphore is increased.

Packetizer
When the Packetizer receives and SO object it will establish a communication session with the
ACTD-AIDE Bridge code. The SO object will be converted into the normalized data stream
specified by ACTD. Once normalized, the data will be transmitted to the Packetizer using the
established TCP/IP socket. Once completed, the SO state is set to FORWARDED and sent to the
Dispatch Queue and the Dispatch Semaphore is increased.

Finalizer
When the Logger receives a new SO, the SO is logged (appended) to the current day’s log file.
Once completed the SO is destroyed.

Error Thread
When the Error Thread receives a new SO the SO is logged (appended) tot he current days Error
Log File. Once completed the SO is destroyed.

4.9.3.2 NMA/AIDE Implementation

The NMA module accepts real-time input from ASIM, JIDS and NetRadar sensors, filtered
through corresponding bridges. NMA parses the data, derives additional data from the raw data,
assigns fuzzy values to data fields, recommends a course of action, and produces normalized
output. The output is fed to the Gensym system or TIS bridge. The NMA module can also
display the details of each sensor message before it becomes normalized on a local screen.

Since the NMA interfaces with the bridges, it follows the configuration of the bridges' interface.
Originally, the sensor bridges were providing output on a single socket, and opened and closed
the socket for every message. The original configuration for NMA is presented in the top figure
on the next page. The bridges’ interface was changed to the socket stream concept, where each
bridge opens a socket and keeps it open throughout the connection. This concept is used for both
input to and output from NMA. The new NMA configuration is presented in the bottom figure.

The NMA Module was tested using real-time simultaneous sensor data from ASIM_2.0 and
JIDS, and TIS and Gensym output.

31

Figure 15 - Original Configuration of NMA Interface

Figure 16 - Modified Configuration of NMA Interface

 NMA
Normalized
output

Port TIS or
Gensym

ASIM
bridge

JIDS
bridge

NetRadar
bridge

Port

Port

Port

 NMA

ASIM
bridge

JIDS bridge

NetRadar
bridge

Port

Normalized
output

TIS bridge or
Gensym Port

32

4.9.3.3 Modified NMA Structure

In this section we will cover individual NMA modules in more detail.

Figure 17 - Internal Box Diagram of NMA Module

The changes in the modules can be summarized as:

• The original Receiver and Packetizer modules have been updated to reflect the change in

sensor input interface and TIS interface.
• All modules have been upgraded to process heartbeat messages.
• Parser and Deriver have been upgraded to process ASIM_20 data instead of ASIM_17 data.
• Classifier module has been added.

Heartbeat messages are messages transmitted by a sensor every minute to indicate that the sensor
is alive. We added capability to process heartbeat messages received from ASIM and JIDS, and
output a normalized string that indicates what sensor the heartbeat is from.

Receiver
The Receiver receives data from the sensors and thus provides the interface between NMA and
sensors. Originally, the bridges’ output opened and closed a socket for every sensor message,
and Receiver’s block diagram was as shown below. Performance concerns dictated that the
overhead of opening and closing a socket for every message be eliminated and a socket opened
and kept open throughout the connection. We changed the receiver to correspond to the new
sensor output model, as presented on the following page.

NMA

Receiver Parser Deriver Specifier

Classifier Normalizer

Error Finalizer

Packetizer

33

Figure 18 - Original Receiver Block Diagram

Opening and closing a socket for every message was automatically performing multiplexing of
multiple concurrent sensor inputs, which the new model could not do, therefore we implemented
multiplexing capability in the new model. The options included: opening a separate socket for
every sensor and somehow multiplexing socket inputs; or writing a multiplexing module before
messages are passed to the NMA input socket. The concurrent threading mechanism used for
NMA architecture allowed us to receive different sensor input on different ports, and use the
internal dispatching mechanism to multiplex the messages.

Figure 19 - New Receiver Block Diagram

Parser
The Parser module parses raw sensor data. Originally, Parser was designed for ASIM_17 data.
We have upgraded it to parse ASIM_20 data, both connection and buzzword strings.

Deriver
The Deriver collects additional data based on the received raw sensor data. Some of the
functions of Deriver include:
• Determine which host is source and which host is target. Source host is the host that is local;

if both sender and receiver are local, the sender is the source.
• Perform DNS lookup to determine the host name corresponding to IP address, as well as host

type.

Receiver for ASIM

data

Receiver for JIDS

data

Port

Port

Receiver for
NetRadar data Port

Internal
multiplexing
mechanism

To Parser

Port Receiver

34

• Check if a host is from the local domain, if a host is hotlisted, and determine which country
the host is located in. This information is kept in separate files for easy editing without
recompilation.

• Map port numbers into service names. This information is kept in a separate file for easy
editing without recompilation.

• Recognize buzzwords recognized by ASIM, NetRadar and JIDS.
• Derive military time, day and date.
• Keep track of cumulative number of bytes transferred from each host, as well as alarm levels

raised.

Specifier
The Specifier assigns fuzzy values to raw and derived data fields. We assigned fuzzy values that
can be easily edited by system administrators without recompiling, because they are kept in a
separate file. Fuzzy values are assigned to time of day, day of week, alarm level, session
duration, session volume, session alarm, cumulative session volume, duration and alarms raised
from suspect and target, service, buzzword, and host country and type.

Classifier
The Classifier module assigns recommended course of action (COA) for each message. This
module uses a rules table to assign a recommendation based on various fields of the message.
This table is editable by system administrators.

Each message field type is represented by one column in the table, but some sensors can have
multiple message fields of the same type. We devised an algorithm to take this into account. For
example, JIDS can have multiple BUZZWORD fields. We construct a separate “message” for
each duplicate field, and check each of these “messages” against the rule table. Therefore, we get
one recommended COA for each “message”. Out of these COAs we assign the most critical one
as the overall recommended COA for the original message.

Normalizer
The Normalizer produces a normalized output string in the format accepted by TIS and Gensym.
This output string contains fuzzy values of raw sensor data.

Packetizer
The Packetizer is the module used to send data on the output socket, to the TIS bridge or
Gensym. It has been upgraded to keep a socket open throughout the connection, instead of
opening and closing for each sensor message.

Finalizer
The Finalizer is the “garbage collecting” module, that deletes messages from the NMA module
after they have left the module.

Error
The Error module is used to process messages that could not be sent for some reason, either
because of invalid format or unavailable output interface.

35

4.9.3.4 Java GUI Interface

We added a Java GUI interface which allows for visual manipulation of the data and display, and
editing of the situational policy table used by the Classifier module

Our approach uses the Java Swing package to implement tables. The Swing package has JTable
model for displaying and editing tables.

5.0 Summary

Our findings are that most information warfare technology advancements are in the form of point
technologies that solve specific problems under specific conditions. Most new advancements
tend to re-invent at least part of the wheel, causing progress to be slow and lethargic.

The approach developed under this effort to advance the state-of-the-art in decision support for
the Information Warrior is quite different. Our position is that decision support is very closely
tied to the day-to-day situation and mission that the Information Warrior is presented with. This
means that development of decision support solutions, recommended course of actions (COAs),
situation assessments and risk analysis cannot be addressed using “point solutions”, because they
would be obsolete before they were released. This hypothesis is not conjecture on our part, but
rather is based on the direction we received from mission planners and Information Warriors in
the field that we interviewed during this effort.

To support the Information Warrior’s mission WetStone Technologies Inc. has developed an
initial decision support capability under this effort that:

1. Supports multiple GOTS/COTS sensor inputs
2. Provides “real time” results
3. Is user configurable
4. Provides “At-a-Glance” visual identification of events
5. Automatically performs initial data mining for each event
6. Automatically fuses sensor’s signature based detection capability with a situational policy

for event filtering and assessment
7. Is hosted on an affordable PC platform

We have also validated our approach and the tool’s potential via user feedback from several
DOD agencies including AFMC NOSC, NSA and DISA.

